

Sea Captain Marine Surveyor Inc.

E: info@seacaptainmarinesurveyor.ca Ph: (250) 266-1522

W: www.seacaptainmarinesurveyor.ca

406 Millstone Avenue, Nanaimo, B.C. V9S 5A7

File No: XXXX2025

Pre-purchase Survey – (Enter Client's Name) October 2025

Table of Contents

Survey Scope	3
1. Vessel Overview.....	4
2. General Description	5
3. Hull & Structural Components	6
4. Deck Equipment & Anchoring System	8
5. Through-Hull Fittings	9
6. Main Engines.....	10
6.1 – 6.2 Auxiliary (Outboard) Kicker Engine - Generator	13
7. Running Gear	13
8. Fuel System	14
9 - 9.1. Electrical System – AC System.....	15
9.2 DC System	15
9.3 Batteries	16
10. Navigation System	17
11. Safety Equipment	19
11.1 Fire Extinguishers.....	20
11.2 Alarms & Detection Systems.....	20
12. Bilge Pumping System	20
13. Domestic Systems, Appliances & Propane System	21
14. Heating Systems.....	21
15 - 15.1. Plumbing - Sewage and Head System.....	22
15.2 Hot/ Fresh and Potable Water	23
16. Tender	23
17. Short Operational Test Run.....	24
Recommendations	25 – 28
Vessel Condition	28
Valuation Summary	29
Appendix	30 - 33
Utilization of Survey	33

Survey Scope:

Purpose:

Sea Captain Marine Surveyor Inc. conducts a visual, non-invasive inspection to assess the vessel's apparent condition and estimate its fair market and replacement values. The survey is limited to accessible areas and systems at the time and location noted; no destructive testing, mechanical diagnostics or electrical load calculations are performed. Observations are compared to applicable standards and guidelines (Transport Canada Small Vessel Regulation SOR/2010-91, Transport Canada Construction Standards for Small Vessels TP1332, Transport Canada Safe Boating Guide TP511E & Canada Shipping Act 2001, International Regulations for Preventing Collisions at Sea, 1972 (COLREGs 1972), American Boat & Yacht Standards (ABYC), NFPA 302 Fire Protection Standard for Pleasure and Commercial Motor craft), but the report is not a certification of compliance. Hidden defects or latent conditions may exist beyond the scope of this survey.

Survey Techniques & Conditions:

We employ non-destructive methods such as percussion sounding, moisture meter readings and basic electrical continuity checks. Mechanical, electrical and electronic equipment are inspected externally only; operation, load testing or disassembly are beyond the scope of this survey. Rigging is inspected from deck level only. Evidence of prior repairs or modifications is noted when visible, but their workmanship and integrity are not evaluated. If specialized inspections are required (e.g., engine diagnostics, rigging aloft, electrical sizing), the Client should engage certified professionals at their own expense. Areas not readily accessible due to design, storage or owner-provided access will be identified in the report.

Survey Context & Limitations:

The vessel was inspected afloat at its berth within a covered boat garage at Anchorage Marina in Nanaimo between 9 A.M. and 3 P.M. An in-water inspection was conducted for approximately two hours prior to the haul-out. The vessel was subsequently lifted and inspected out of the water for approximately one hour. Following the haul-out inspection, the vessel returned to the dock to board the attending mechanic from OCEAN TRACK, represented by (Mechanic's Name).

A short 30-minute operational test run was then carried out to evaluate machinery performance and onboard systems. Upon completion of the operational run, the vessel was returned to the dock to finalize the inspection and complete all onboard system testing. During the inspection, the vessel remained connected to shore power (AC). The generator was operated for a limited period to verify output and functionality. All major navigation and electronic systems were energized and operated. The anchor windlass was tested in both directions not under load. Freshwater pumps, sanitation systems, and associated plumbing were operated and observed functional. Refrigeration units and select heating appliances were operated during the inspection period and confirmed operational at that time.

Accessibility to several areas was limited by permanent joinery and installed systems. The port-side battery bank was only visually inspected due to minimal clearance between the cabin sole and battery tops, restricting full access for terminal and containment evaluation. The starboard battery bank was partially accessible and inspected as a group rather than individually. Both fuel tanks were not directly visible, with only the top fittings accessible through small service hatches. The aft freshwater tank and holding tank were not exposed for inspection; only their fittings and plumbing connections were visible. The port-side fuel fill hose and associated fittings were not accessible. Various electrical and plumbing systems located behind fixed cabinetry or bulkheads were not directly inspected. The main engines, generator, and associated systems were accessible and inspected from visible and reachable areas only.

Report of survey made by the undersigned surveyor of Sea Captain Marine Surveyor Inc. at the request of (Client's Name), while the vessel was in the water at Anchorage Marina, Nanaimo, and then hauled out of the water at Stones Boatyard & Marina, Nanaimo, on the XX day of October 2025.

This report was issued for the following purposes only: Pre-purchase Survey.

1. Vessel Overview

Name of Vessel: None Assigned.

Year, Type & Model: 1990 BAYLINER 4588 Pilothouse Motor Yacht.

Builder: BAYLINER Marine Corporation, Arlington, Washington.

License/Official No: BC XXXXXXX. *As seen from hull side.

Hull ID No: BLBA37EMXXXX. *See picture below.

Overall Length (Approx.): 13.82 m (45 ft 4 in).**

Waterline Length (Approx.): 12.34 m (40 ft 6 in).**

Beam: 4.55 m (14 ft 11 in).**

Draft: 0.91 m (3 ft 0 in).**

Bridge Clearance: 4.72 m / (15 ft 6 in).**

Displacement/Dry Weight (Approx.): 28,000 lb (12,700 kg).**

Hull Colour: White topside and deck and black antifouling and canvas enclosure.

Power: Dual HINO W06D-TI six-cylinder diesel engines 220 HP (164 kW).

Estimated Maximum Hull Speed (Approx.): 16 knots (18.4 mph / 29.6 km/h).

Estimated Cruising Speed (Approx.): 14.5 knots (16.7 mph – 27 Km/h).

Person attending survey: Nicolas Cote (Surveyor), (Client's Name), (Broker's Name).

Mechanic's Information: ((Mechanic's Name) – OCEAN TRACK, Phone).

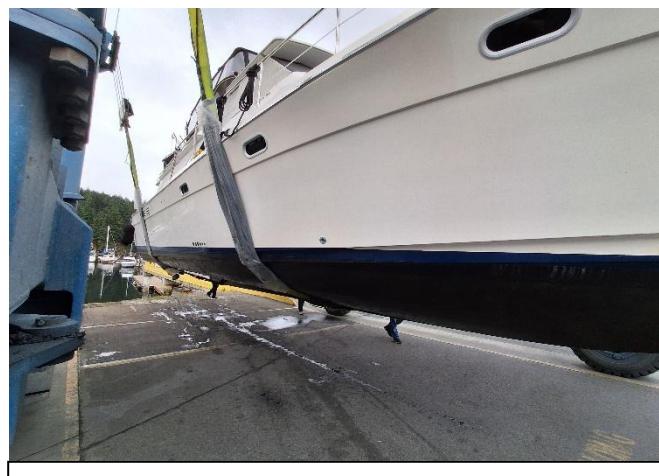
Client's Information: (Client's Name, Phone and Email).

Weather Condition: 13°c, Partially Cloudy. Wind NW 10-12 Knots.

****Data Source:** The official Owner's Manual for the BAYLINER 4588 Pilothouse does not include a dimensional or specification table. Therefore, the measurements seen in this report were taken from the current online listing found on: <https://www.boatdealers.ca/boats-for-sale/581748/bayliner-4588-nanaimo-british-columbia>.

Report Summary		
Intended use:		Pleasure Craft
Estimated current fair market value:	*Excluding taxes.	\$ XXX,XXX – XXX,XXX CAD.
Estimated replacement value (Approx.):	*Excluding taxes.	\$ X,XXX,XXX CAD.

2. General Description:


The vessel is a 1990 BAYLINER 4588 PILOTHOUSE MOTOR YACHT constructed by BAYLINER MARINE CORPORATION. The hull was a fiberglass reinforced plastic (FRP) modified-V design with a molded FRP transom and shoebox-style deck-to-hull joint fitted with an external rub rail. The deck and superstructure were cored FRP with an aluminum radar arch. Propulsion provided by twin HINO W06D-TI six-cylinder turbocharged and intercooled diesel engines rated at 220 HP (164 kW) each, driving through HURTH HSW 630A 2.0:1 marine gearbox to four-blade bronze propellers measuring 21.5 inches in diameter. The propulsion system included PSS dripless shaft seals, bronze struts, and unbalanced bronze rudders operated by a dual-station HYNAUTIC hydraulic steering system. Trim control assisted by BENNETT hydraulic trim tabs, and fixed MARTYR sacrificial anodes were installed for cathodic protection.

The vessel interior layout comprised two staterooms and one convertible office or guest cabin adjoining the master stateroom, two heads with showers (forward head fitted with bathtub), and a full galley located amidships. Galley equipment included a FORCE 10 three-burner electric stove with oven, NOVA KOOL RFU9000 refrigerator and freezer, EWAVE microwave, and WHIRLPOOL trash compactor. Heating was supplied by an AUTOTERM FLOW 14D diesel heater and multiple 12V DC MSR units. Hot water provided by a GSW SPACESAVER 43 L (12 US gal) electric water heater. Fresh water capacity totaled approximately 760 L (200 US gal), and fuel capacity totals 954 L (252 US gal) per tank in two aluminum tanks. Sanitation included dual TECMA electric toilets, a TANKWATCH monitoring system, and a 180 L (48 US gal) holding tank with XYLEM macerator pump.

Navigation and communication systems included SIMRAD NSS EVO3S chart plotter, ICOM IC-M506 and IC-M402 VHFs, RAY-LINE searchlight, RITCHIE and AZIMUT 1000 compasses, IMPULSE 2830 and HUMMINBIRD depth sounders, and a SIMRAD NAC-2 autopilot with CETEC BENMAR fluxgate compass. AC power supplied via triple MARINCO 30A shore inlets and VOYAGER TRACE ENGINEERING inverter or charger, with DC distribution supported by dual battery banks, MCCARRON VMI charger, and VICTRON ENERGY BMV-700 monitor. Safety equipment included CIL-ORION flares, multiple ABC fire extinguishers, KIDDE CO and smoke detectors, AIRHEAD and Coast Guard approved PFDs, BRINKMANN Q-BEAM spotlight, and a re-boarding ladder on the port swim platform.

Picture 1: Port side bow view.

Picture 2: Starboard side bow view.

Picture 3: Port side stern view.

Picture 4: Starboard side Stern view.

3. Hull & Structural Components:

Hull Material: Fiberglass reinforced plastic (FRP) construction with modified-V hull form.

Hull or Machinery Redesign/Overhaul: None observed or reported.

Bottom Paint Condition: Black antifouling coating observed continuous with no bare areas or flaking. Coating serviceable.

Gelcoat Finish: Uniform surface observed. No discoloration observed. No blisters present below the waterline.

Bow Condition: Small, localized impact on starboard bow approximately 50 mm x 50 mm (2.0 in x 2.0 in), located 0.76 m (2.5 ft) above the waterline and 1.52 m (5 ft) aft of the stem. Damage cosmetic in nature; no moisture intrusion detected. See picture 5 and 6. * See recommendation C-1.

FRP Stress Cracks: Multiple surface stress cracks observed scattered throughout the vessel's deck areas. A single continuous fiberglass stress crack approximately 1.10 m (43 in) long noted on the port deck between the rub rail and cleat, extending aft toward the port access door and around the deck coaming near the cleat. The affected section exhibited signs of localized delamination surrounding the primary crack area. See appendix photo 1. *See recommendation C-2.

Deck: Shoebox-style deck-to-hull joint fitted with external rub rail. Rub rail displaced at starboard bow, fasteners loose and misaligned. Deck was cored fiberglass reinforced plastic. The walking surface was finished with a molded non-skid diamond pattern providing traction underfoot.

Deck Moisture: Localized softness detected across the forward deck area, extending from the bowsprit to the bow seating platform and spanning from the port side to the starboard side around both deck hatches.

Picture 5 and 6: Starboard bow impact affecting gelcoat.

Moisture readings elevated near the deck hatches, windlass foot switches, and within the bow seating area. The affected region was broad and may extend beyond the visibly softened areas, as moisture migration within cored fiberglass structures can travel further than the initially detected boundaries. High moisture levels were concentrated throughout the forward deck and should be assumed extensive until verified by destructive testing or core sampling. See picture 7. *See recommendation C-3.

Keel: Full bonded fiberglass shallow keel approximately 0.38 m (15 in) deep. Structure solid and free of damage.

Bulkheads: Tabbed and bonded; secure where accessible.

Stringers: Solid and sound where accessible from within engine compartment.

Transom: Sound with no impact damage. Starboard access door fitted and operational.

Cabin Sole: Covered by carpet; not removed for inspection. Sole felt solid underfoot.

Interior Woodwork: Teak overlay finish observed uniform.

Swim Platform: Molded fiberglass reinforced plastic structure with surface stress cracks of cosmetic nature. Connection points to hull solid; mounting bolts exhibited rust staining. No davit attachments installed. See picture 8. *See recommendation C-4.

Superstructure: Cored FRP construction with aluminum radar arch.

Interior Layout: Two double staterooms and one convertible office/guest cabin adjoining master stateroom. Two heads (one with bathtub and one with shower) and galley amidships.

Mold and Cleanliness: Mold observed on interior wood panels within port side guest cabin's storage compartments. See appendix photo 2. *See recommendation C-5.

Hull Percussion Soundings: Conducted along hull sides and bottom; laminate solid with no delamination detected below waterline.

Picture 7: Bow deck view showing elevated moisture and soft spot.

Picture 8: Under view of swim grid showing rusty attachment bolts for re-boarding ladder. Also showing FRP stress cracks.

4. Deck Equipment & Anchoring System:

Mooring Equipment: Several mooring lines, eight fenders, and two pike poles on board. Kayak holder mounted on flybridge.

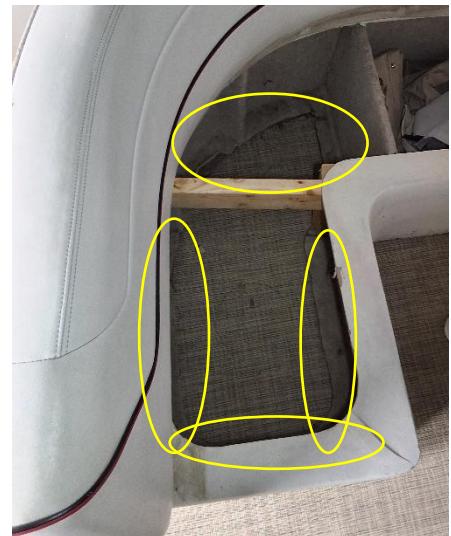
Davits: Electrical cable davit system rated for 227 kg (500 lb) located on top deck starboard side. Cable and winch assembly inspected visually from exterior housing only. Winch not tested under load.

Windows and Portholes: BOMAR windows fitted throughout. No cracked panes but light crazing observed. Seals observed serviceable. Corrosion present on several interior hinges and handles. Starboard bow exterior porthole frames exhibited impact damage and surface scratching near rub rail. See picture 9, 10 and 11. *See recommendation C-6.

Defrosters: Two 12V DC defroster vents fitted at inside helm windshield.

Picture 9 (Left): Inside view of port side bow porthole. Rust stain and corrosion visible on aluminum fasteners. Same condition on starboard side portholes. (not pictured)

Picture 10 & 11 (Right): Starboard side portholes frame at the bow, outside view. Showing scratches and impact damage around the frame's perimeter.


Windshield Wipers: Three 12VDC wiper assemblies installed on pilothouse windshield. Port-side unit nonfunctional during test. *See recommendation C-7.

Upholstery: White vinyl upholstery throughout exterior seating. No rips or tears observed. Flybridge starboard seat previously repaired due to frame rot. Port-side seating frame plywood delaminating, primarily aft section. See picture 12. *See recommendation C-8.

Hatches: Four bow deck hatches mounted on 12.7 mm (0.5 in) coamings. Crazing observed on hatch lenses. Lock mechanisms operational and seals intact. Not tested for water tightness.

Stanchions, Railings, and Lifelines: Stainless steel stanchions and railings installed around bow and side decks. Bases showed no rust staining. Fasteners previously replaced. All fittings secured with no movement. Lifelines intact, no corrosion or deformation.

Canvas Gear: Black flybridge enclosure with removable vinyl panels supported by stainless steel frame. Vinyl panels clear and pliable. Separate windlass cover fitted. All zippers functioned well and showed no corrosion.

Picture 12: Port side flybridge seating with rotting plywood base.

Chocks and Cleats: Stainless steel hardware throughout. No cracks or corrosion observed.

Cabin Ventilation: Natural ventilation only; no mechanical or forced-air ventilation system installed.

Anchors: One Bruce-style anchor weighing 20 kg (44 lb) secured at bow roller. Stainless steel swivel connector and attached bitter end secured in anchor locker. Anchor locker clean and dry.

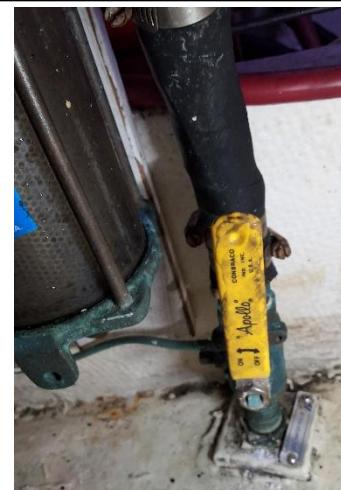
Anchor Rode: Galvanized chain 45.7 m (150 ft) of 11 mm diameter with painted markings. Nylon rode 45.7 m (150 ft) of 16 mm (5/8 in) diameter attached. Length obtained from owner's notes.

Anchor Windlass: MUIR COUGAR model 4R-77C, serial number 4557. Electric windlass with foot controls at bow. Electrical connections observed intermittent during testing. See picture 12 & 13. *See recommendation B-1.

5. Through-Hull Fittings:

Above Maximum Heeled Waterline:

- Two fuel tank vents, starboard and port side mid-ship, flame screen present, stainless steel fittings.
- Sewage tank vent, starboard side mid-ship, stainless steel fitting, showing corrosion.
- Water tank vent, starboard side forward, bronze metal fitting.
- Galley sink discharge, starboard side mid-ship, bronze metal fitting.
- Two cockpit drains discharge, port and starboard aft, bronze metal fittings.
- Two deck drains discharge, port and starboard mid-ship, bronze metal fittings.
- Head/sewage tank discharge, starboard side mid-ship, bronze metal fitting.
- Two head sinks discharge, starboard side mid-ship, bronze metal fittings.
- Three electric bilge discharges, port side aft (2) and starboard mid-ship (1), bronze metal fittings.


Comment: Made from stainless steel and bronze material, all fittings located above the waterline are

Picture 12 & 13: MUIR windlass and anchoring system including foot controls (working intermittently), anchor and attachments with bowsprit.

Picture 14: Main engines saltwater intake for cooling system. Double clamped and tested by hand only.

Picture 15 (Left) & 16 (above): Washdown and generator saltwater intakes. Both double clamped and labeled.

subject to degradation from ultraviolet exposure and saltwater environment. These components have a limited-service life and should be inspected regularly and replaced as required to maintain watertight integrity.

Below Maximum Heeled Waterline:

- Two head saltwater intakes, bronze seacock, starboard side mid-ship, both valves capped off and not currently in use.
- Two engine saltwater intakes, bronze seacock, port and starboard by keel, valve operated smoothly. See picture 14.
- Two engine exhaust outlets, molded into fiberglass hull, port and starboard aft. Direct outlets.
- One washdown pump inlet, bronze seacock, port side aft engine room, handle loose but working. Double clamped. See picture 15.
- One generator saltwater intake, bronze seacock, starboard aft engine room. Double clamped. See picture 16.

Comment: Bonding wire present. Emergency bungs present randomly in the vessel. All fittings appeared securely installed with backing plates. No movement present. All valves labeled and tested by hand only.

6. Main Engines:

Main Engines: Twin HINO W06D-TI six-cylinder, four-cycle, turbocharged and intercooled diesel engines, freshwater cooled. Each engine rated at 220 HP (164 kW) at 3,000 RPM, displacement 6.443 L.

- Starboard engine serial no.: 1059 – hour meter: 1318.9 h.
- Port engine serial no.: 1161 – hour meter: 1258.0 h.
- Identification plates present and legible.

Picture 17: Starboard hour meter.

Fuel Type: Diesel.

Engine Oil & Coolant: Oil change pump installed – LITTLE GIANT model PPS-12, 12 V DC, located aft in engine room. Levels not verified by surveyor.

Engine Controls: Electric ZF control at lower helm. Flybridge fitted with MATHERS MICRO COMMANDER electronic throttle/shifter.

Instrumentation & Alarms: Engine instrumentation and audible/visual alarm panel at inside helm included tachometer, coolant-temperature, fuel-level, oil-pressure, battery-voltage, and hour meters (starboard side housing not in place). Rudder-angle indicator inoperative. Alarm functions not tested. See picture 17. ***See recommendation B-2.**

Picture 18: HURTH port side transmission gear.

Starter & Ignition Wiring: 12 V DC solenoid-type starters; ignition cabling in satisfactory condition.

Turbochargers: Fitted on both engines.

Control Processors: Two MATHERS MICRO COMMANDER processors, one per engine, located port and starboard in engine compartment. Units control throttle and transmission engagement through 12 V DC electronic actuation. Wiring observed secure and housing intact.

Belts & Injectors: Serpentine belts loose; soot accumulation noted around both engines. During limited operational test run, starboard engine produced smoke and odor of burnt rubber. See picture 23 & 25. *See recommendation B-3.

Reduction Gears: HURTH model HSW 630 A – 2.0 ratio. Serial numbers illegible. See picture 18.

Exhaust System: Wet-exhaust configuration with fiberglass PRIMEX inline silencers fitted in both exhaust lines. These units serve as acoustic dampeners but do not prevent water backflow into the exhaust system. Ensure exhaust hose runs maintain a continuous downward slope from the engine elbow to the outlet and that anti-siphon loops are properly installed and functional. Exhaust hoses were GREEN-LINE G381 series SAE J2006 R6 marine-graded coolant hose.

- **Starboard side:** Single stainless steel clamp on each hose connection. See picture 19.
- **Port side:** Multiple cracks visible near heat-exchanger elbow and outer bends; hose soft and folded. See appendix photo 3.

*See recommendation B-4.

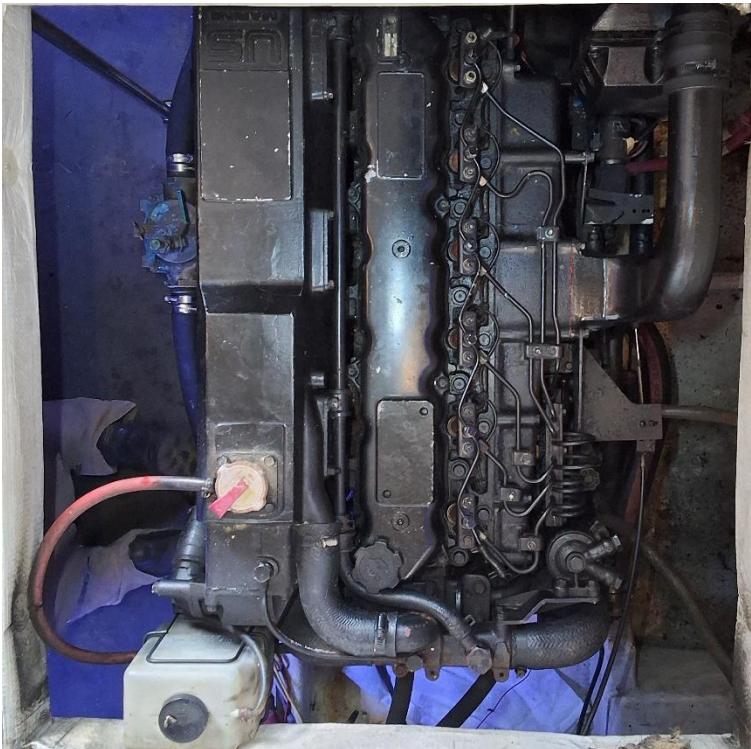
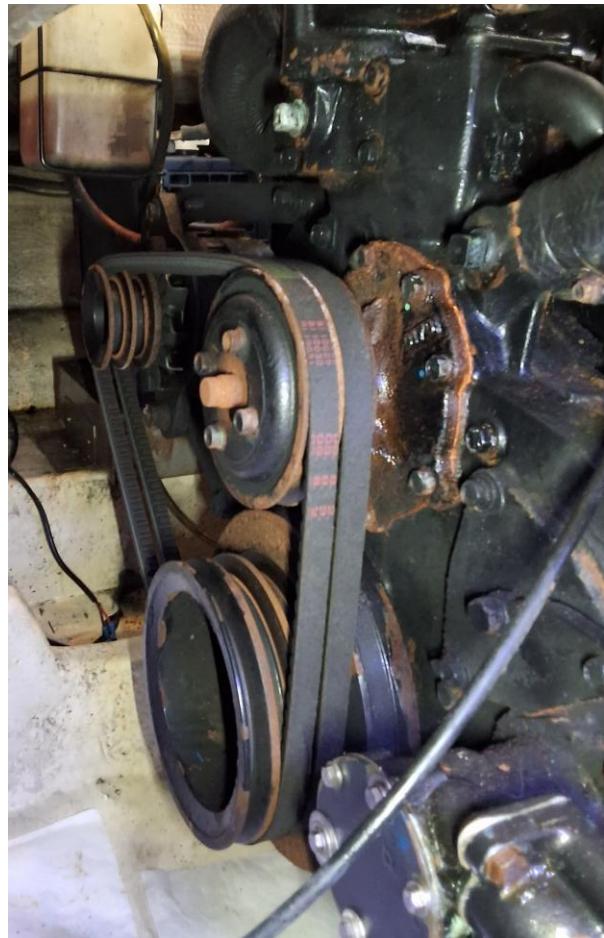
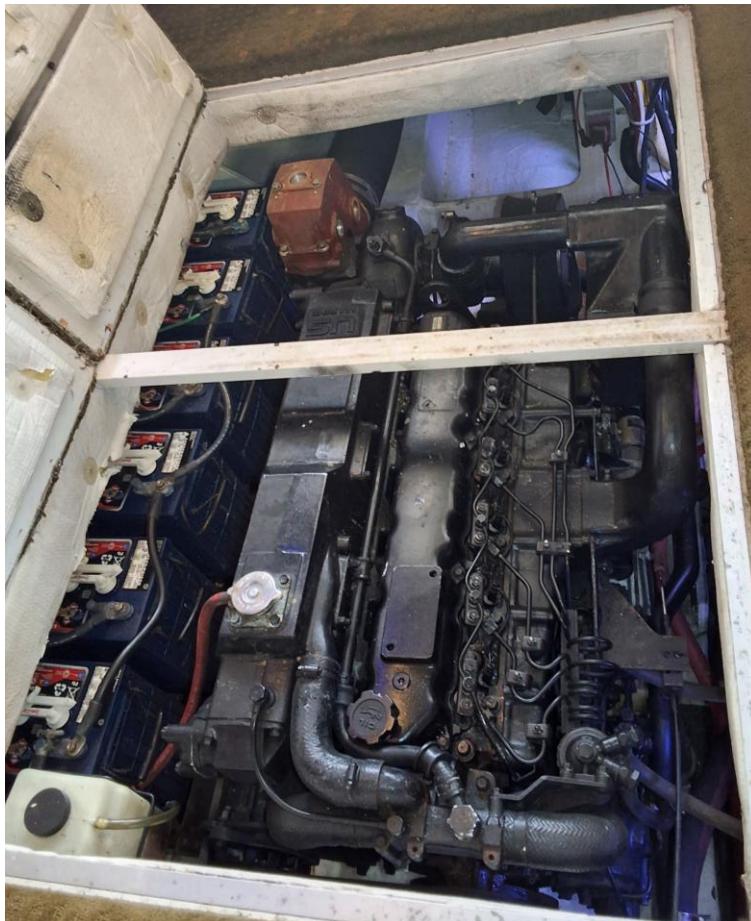
Cooling System: Two raw-water strainers by PERKO, bronze body model 0500 series with stainless steel basket, one per engine located outboard of engine room walkway. Hoses NEW-LINE brand marine coolant type with double stainless steel hose clamps. See picture 20.

Alternators: One 12 V DC alternator per engine; built-in regulators, wiring secure, identification plates visible.

Engine Mounts: Four-point isolation mounts per engine with rubber dampeners. Surface corrosion on mount bolts noted, attachment solid.

Ventilation: Engine-room blowers installed, tested operational.

Engine Room: Fiberglass-lined with insulation. Lighting functional. No automatic fixed fire-suppression system fitted. Access hatches—port hatch handle rusted and difficult to operate; starboard lift mechanism seized; mid-hatch handle stiff. Numerous FRP surface cracks present. See picture 21. *See recommendation C-9.




Picture 19: Single hose clamp used at silencer connection.

Picture 20: Starboard side bronze seawater

Picture 21: Aft cockpit access hatches (3) with damaged handles.

Picture 22 & 23 (Top Left and Right): Starboard side main engine top and front view; Picture 24 & 25 (Bottom Left and Right): Port side main engine top and front view.

6.1 Auxiliary (Outboard) Kicker Engine: None present.

6.2 Generator:

Make / Model: WESTERBEKE marine diesel generator, three cylinders, serial no. 24968.

Location: Mid-ship aft, accessible from centerline hatch. Unit mounted within a sound-attenuated enclosure with removable access panels.

Fuel Source: Diesel.

Rated Capacity: Ratings not visible or obtained – operating hours 984.1 h.

Cooling System: Raw water cooled through two bronze PERKO model 858E strainers, securely mounted and fitted with stainless steel baskets.

Exhaust System: Bronze outlet flanges located at outer transom port and starboard side. FRP water-lift muffler fitted and properly supported. Exhaust hose LAWRENCE marine wet-exhaust type, double-clamped at all ends; one clamp showed surface rust. See picture 27.
*See recommendation B-5.

Oil & Coolant Levels: Not verified at time of inspection.

Drive Belts: Accessed through forward service panel; tension observed within specification.

Operational Test: Generator started remotely and operated for approximately 15 minutes during limited operational test run. Output verified charging ship's batteries. Temperature stable, no abnormal vibration or noise observed.

7. Running Gear:

Propellers: Bronze painted over; four-blade type, 21.5" diameter. Propellers do not extend below keel.

Propeller Shafts: 1.5" stainless steel shafts fitted with PSS dripless shaft seal systems. Shaft coupling bolts (4x each) observed tight and free of corrosion. Shaft bonding metallic strip secure.

Struts: Bronze twin struts with through-bolted backing plates; fasteners clean and free of rust. Bearing observed tight with no play. Approximate dimensions: 7" width x 16" length x 10" height.

Picture 26: WESTERBEKE marine diesel generator within insulated case box. Located aft in engine room.

Picture 27: Generator's exhaust hose clamps showing surface rust. Also visible is the HYNAUTIC steering cylinder.

Picture 28: Stern view of running gear including anode, trim tabs, rudders and propellers.

Rudders: 16" x 12" un-balanced bronze rudders. Starboard stuffing box showed minor seepage during limited operational test run. *See recommendation B-6.

Rudder Angle Indicator: Not operational at either helm station. *See recommendation C-10.

Steering System: Dual-station HYNAUTIC hydraulic steering system with RV-55 RESERVALVE. Fluid level observed within specification. One starboard forward engine-room steering pump present observed leaking at fittings connections. *See recommendation B-7.

Trim Tabs: Four BENNETT hydraulic trim tabs operating in paired configuration. Tested and functional; port-side trim-tab plate partially separated at hinge. See picture 29. *See recommendation C-11.

Cathodic Protection: Sacrificial MARTYR transom plate anode (<50% depletion). Three shaft anodes observed: all intact and effective.

8. Fuel System:

Fuel Tanks: Two aluminum (5052 alloy, 3/16" thickness) fuel tanks—one port and one starboard—mounted athwartship amidships below the salon sole, extending aft beneath the cockpit deck. Limited access; only starboard tank partially visible through small floor hatch. Port tank not visible. Tanks were original to the vessel (manufactured January 1990).

Capacity (Approx.): 954 Liters (252 US gallons) each; total 1907 Liters (504 US gallons).

Grounding: Bonding/grounding wire present and secure on visible tank.

Inspection Notes: No internal inspection possible due to full encasement. Visual surfaces appeared dry with no evidence of leakage. Due to limited accessibility and tank age, consider pressure testing the fuel system up to 3 psi to verify integrity and identify any potential seepage or corrosion.

Fuel Fill System: LAWRENCE 2752 SAE J1527 Type A2 fill hoses observed, secured with stainless steel clamps and fitted with intact O-rings. Permanent "Diesel" markings visible. Starboard fill cap secured; port-side fill cap unsecured at time of inspection. Port fill hose not accessible internally. See picture 30. *See recommendation B-8.

Fuel Gauges: Analog gauges located at the pilothouse station; operational status verified. The fuel gauge readings were not compared with the actual fuel level, and the physical level of fuel in the tank was not verified during the survey.

Picture 29: Port side trim tabs partially separating at the hinge.

Picture 30: Port side fuel fill cap not permanently attached.

Picture 31: Fuel manifold located below stairs amidship.

Fuel Vents: Port and starboard stainless steel vent fittings fitted with flame arrestor screens.

Fuel Shut-off Valves: Manual fuel manifold located below mid-ship stair access, with isolation valves for port and starboard supply lines. See picture 31.

Fuel Lines: Type A1 SAE J1527 hoses (circa 1990). Visible hose sections observed intact. Clamps properly seated and free of visible corrosion or movement at connection points.

Fuel Filters: Dual RACOR 500FG stainless steel fuel filter/water separator assemblies located near mid-ship fuel manifold—one per main engine. Sight bowls clear, with drains and T-handles intact.

9. Electrical Systems:

9.1 AC system:

Shore Power Connection: Three MARINCO 30 A / 125 V shore inlets located starboard side mid-ship on the exterior side panel. Back sides protected, no evidence of arcing or heat discoloration. Additional MARINCO TV/phone connection present. See picture 32.

Main AC Breaker: Double-pole main breaker located within 3.05 m (10 ft) of shore-power inlets on starboard-side distribution panel, compliant with ABYC E-11.

Switchboard Panel: Main AC/DC distribution panel located starboard side of cabin. Back side not accessed. AC wiring observed segregated from DC conductors. Polarity-check indicator present. Wiring of marine-grade type. One AC wet-location switch installed starboard aft in engine room, tagged "DANGER—Do Not Operate." Tag typically indicates isolation by an electrician during maintenance. See appendix photo 4. *See recommendation C-12.

Inverter / Charger: VOYAGER by TRACE ENGINEERING inverter/charger located below mid-ship stairs. Date of manufacture January 2000. Remote RC5 control panel installed at the pilothouse station. See picture 33.

Galvanic Isolator: None sighted.

Isolation Transformer: None sighted.

AC Receptacles: Ground-fault circuit interrupter (GFCI) outlets tested and functioning with reset capability. One receptacle installed port side at galley table, mounted horizontally facing upward on settee. See picture 34. *See recommendation C-13.

9.2 DC System:

Wiring: Marine-grade stranded copper conductors installed with organized routing and secure supports. No chafing observed along accessible runs.

Picture 32: MARINCO shore power connections.

Picture 33: VOYAGER inverter/charger by TRACE ENGINEERING.

Picture 34: AC receptacle near galley table settee facing upward.

Switchboard Panel: Main DC switchboard located at the helm station. All circuits labeled and breakers clearly identified.

Bus Bars: Positive, negative, and grounding bus bars installed with full insulation covers. All terminals shielded from accidental contact.

Primary Circuit Protection: Fused housings installed with terminal covers in place. Circuit breakers fitted on main DC panel at helm station.

Main Battery Switches: Three GUEST on/off switches and one PERKO on/off switch located starboard side in main cabin. All switches labeled by function.

Cabin and Deck Lighting: LED fixtures throughout cabin and exterior decks. All tested operational at time of inspection.

Bonding System: Comprehensive bonding network present connecting underwater metals, engines, and DC negative bus. Continuity not verified.

Picture 35: DC battery switches located on the starboard side of main cabin.

9.3 Batteries:

Starboard Battery Bank: Six 6-volt flooded lead-acid deep-cycle batteries (U.S. Battery model US-L16HC). Rated 420 Ah, 250 min at 75 A, and 965 min at 25 A. Batteries installed in parallel configuration. Aluminum battery tray heavily corroded with evidence of electrolyte leakage. Battery acid residue observed in bilge and throughout engine-room deck area. Several terminals exhibited corrosion buildup consistent with acid reaction on lead posts. See appendix photo 5. *See comment below.

Port Battery Bank: Six 6-volt flooded lead-acid deep-cycle batteries (U.S. Battery model US-L16HC). Same rating as starboard bank. Tray contained pooled electrolyte and corrosion on wood spacers and metal eye hardware. Battery terminals displayed acid and corrosion buildup. Access severely limited; clearance between batteries and cabin sole minimal, restricting service and fluid-level checks. See picture 36. *See comment below.

Picture 36: Port side battery bank. Four of six batteries visible. Noticed battery fluid run-off on the side of the batteries. Several terminals were seen corroded.

Genset Battery: One MAGNACHARGE 27DC-180 (MCE 1000 / RES 175 Ah / 105 min reserve). Wing-nut terminals used without heat-shrink protection. Battery box unsecured; retaining strap only loosely fitted to hold lid.*See recommendation B-9.

Battery Bank Containment and Leakage: Acid residue and corrosion staining evident on both port and starboard trays. Fluid contamination present in bilge beneath installation. *See comment below.

Battery Movement: Batteries not restrained against vertical movement.

Terminal Protection: Terminal covers absent on several batteries.

Ventilation: Battery compartments vented to engine room.

Battery Monitoring: VICTRON ENERGY BMV-700 digital monitor installed at the pilothouse station. Analog battery-status gauge present.

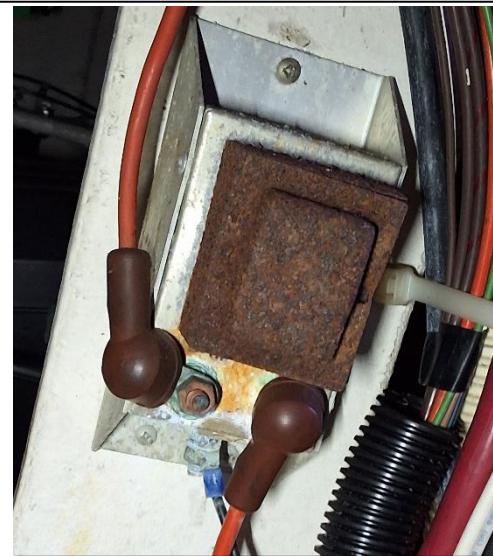
DC Monitoring Instruments: Two SHORELINE digital meters (models 12EXB and 200AB) panel-mounted at lower helm. The 12EXB displays system voltage; the 200AB displays voltage or amperage depending on configuration.

Battery Charger: MCCARRON VMI step charger / DC supply, type VMI 12402 model 200-1240-03, 12 V DC / 120 V AC, serial 1240112904001. DC ammeter integrated with breaker.

Battery Isolator: Aluminum heat-sink diode isolator installed near starboard battery bank. The device divides the alternator output between multiple battery banks and prevents current back feed. Housing and cover plate heavily corroded; terminals fitted with rubber boots. See picture 38. *See comment below.

Comment: The vessel's battery bank installations showed multiple non-compliances with ABYC E-10 standards, including corrosion, acid leakage, unsecured containment, unprotected terminals, and aged charging isolation hardware. The combined issues indicated system deterioration that requires immediate corrective action to restore electrical safety and reliability. *See recommendation A-1.

Inspection Note: Individual batteries not isolated for separate evaluation; inspection conducted on each bank as a complete assembly due to limited access. Clearance to cabin sole restricts maintenance access.


10. Navigation Equipment:

Compasses:

- Flybridge: RITCHIE magnetic compass tested and operational.
- Lower Helm: AZIMUT 1000 magnetic compass installed and functional.

Picture 37: Genset deep cycle battery located aft starboard engine room.

Picture 38: Battery isolator heavily corroded.

Horn / Bell: Dual-trumpet electric horn mounted starboard side of cabin top. Tested operational.

Navigation Lights: Combined red/green navigation lights located on bowsprit. Power supply active, fixture non-functional. Stern light lens crazed and cracked. Navigation light control panel located at helm station with visual indicators for bilge pumps, navigation and deck lights, blower, and shower sump circuits. See picture 39. *See recommendation B-10.

Anchor Light: 360° LED anchor light mounted on radar arch with plastic adjustable bracket.

Picture 39: Stern light lens crazed and cracked.

Searchlight: RAY-LINE remote spotlight installed with controls at both helm stations. Remote controls not responding during limited operational test run. *See recommendation B-11.

Chart Plotter: SIMRAD NSS EVO3S multifunction display installed at lower helm. Ensure to keep charts updated with current modifications.

Sonar / Depth Sounder:

- Lower Helm: IMPULSE 2830 Loran/fish finder unit.
- Flybridge: HUMMINBIRD US MARINE depth sounder.
- Transducer mounted mid-ship below stair access.

GPS: Integrated within SIMRAD NSS EVO3S multifunction system.

AIS: None installed.

NMEA System: NMEA 2000 network present and interfaced with SIMRAD autopilot processor.

VHF Radios:

- Lower Helm: ICOM IC-M506.
- Flybridge: ICOM IC-M402.
- Both powered and wired to independent antenna connections.

VHF Antennas: One SHAKESPEARE antenna mounted port side on adjustable plastic bracket. Secondary antenna mounted on radar arch port side; brand not identified.

MMSI / Call Sign: No MMSI registered. Call sign sticker "WAM 8944" located near flybridge VHF. *See recommendation C-14.

Autopilot: Primary control unit COMPU-COURSE 220 (not tested). SIMRAD NAC-2 autopilot processor computer installed. Connected to NMEA 2000 network and hydraulic steering pump.

Heading Sensor: CETEC BENMAR BINNACLE fluxgate compass mounted starboard aft compartment, securely fastened and properly oriented.

Radar: No radar present; no dome mounted on arch.

License & Documentation: License records and vessel paperwork were not available at the time of survey. Verification is required to ensure all documentation is current, valid, and maintained on board. The vessel should carry, as applicable, its license or registration, Pleasure Craft Operator Card (PCOC), Restricted

Operator's Certificate Marine (ROC-M), Pleasure Craft License (expiry date unknown), Bill of sale and proof of Insurance, if requested by Transport Canada. *See recommendation D-1.

Picture 40: Main inside helm station.

Picture 41: Flybridge helm station.

11. Safety Equipment:

Flares: Six CIL-ORION handheld red marine signal flares expiring December 2025. Six ORION 12-gauge gun-launch type signal flares expiring April 2026. All stored in waterproof orange case at the pilothouse station.

Personal Flotation Devices (PFDs):

- Four AIRHEAD brand UL-certified lifejackets stored on flybridge.
- Six additional lifejackets stored inside cabin, Coast Guard-approved type.
- Transport Canada minimum requirement: one approved PFD per person on board.

Picture 42: Hand-held flares with flare gun and six red flares. Stowed within a hard plastic case.

Throwing Device: One lifebuoy ring fitted with 15 meter (49 feet) retrieval line, mounted port side on flybridge outer railing.

Buoyant Heaving Line: One 15 meter (49 feet) buoyant heaving line located in aft cockpit.

Portable VHF: None sighted.

Sound Signaling Device: 12 V DC trumpet-style electric horn installed at cabin top, tested and operational.

Portable Lighting: BRINKMANN Q-BEAM handheld spotlight with 12 V DC cigarette-lighter connector, stored on flybridge.

Re-boarding Device: Swim platform fitted with re-boarding ladder on port side. Ladder deployable from the water, compliant with ABYC H-41.

Radar Reflector: One mounted on starboard side of radar arch on an adjustable plastic mount.

First Aid Kit: None observed on board.

Life Raft: None fitted.

Comment: It is the owner's responsibility to ensure that all Transport Canada-required safety equipment is onboard, up to date, and inspected annually in accordance with Transport Canada Boating Safety TP511E guidelines. *See recommendation A-2.

11.1 Fire Extinguishers:

Portable Fire Extinguishers: Six 2.5 lb ABC dry chemical extinguishers:

- Two units mounted port and starboard in aft cockpit area.
- One unit mounted forward port side in master cabin.
- One EMEREX brand unit mounted port side in aft guest cabin.
- One unit mounted starboard side in main cabin at elevated position.
- One 5 lb ABC extinguisher mounted below mid-stair pre-engine room compartment.
- One 5 lb ABC extinguisher mounted starboard side in main cabin; pin secured, not tagged.

Fixed (Built-In) Fire Suppression System: None fitted in engine room or machinery spaces.

Fire Port: None installed.

Comment: Vessel was not equipped with two fire buckets of at least 10 L each and not equipped with at least one fire axe. All extinguishers fitted with safety pins and mounted; none observed with inspection tags or current service certification. Consider the addition of an automatic fire suppression system in the engine room for added protection. *See recommendation A-3.

11.2 Alarms & Detection Systems:

Bilge High-Level Alarm: Visual indicator on alarm panel functional. Audible alarm not confirmed during inspection.

Smoke / Carbon Monoxide (CO) Detectors: Four detectors installed throughout accommodation spaces.

- Three KIDDE dual smoke and carbon monoxide combination units dated July 23, 2021 (10-year sealed type). Locations: pilothouse, port bunk cabin, and port stateroom. All tested.
- One FIREBOY-XINTEX carbon monoxide detector installed in forward cabin. Tested. See picture 43.

Propane Vapor Detector: None fitted.

Comment: In accordance with Transport Canada TP 1332E Section 8.9, Section 7.3.2, and Section 7.3.3 and ABYC A-14, A-24 and H-22 standards, vessels with enclosed accommodation spaces must be fitted with a functional bilge high-water alarm, carbon monoxide detectors in all potential livable-enclosed compartment, and at least one smoke detector. While propane vapor detectors are not mandatory, they are strongly recommended to enhance onboard safety where propane systems or appliances exist. *See recommendation A-4.

Picture 43: CO detector located in forward master cabin.

12. Bilge Pumping System:

Pumps: Three electric submersible bilge pumps fitted onboard. See appendix photo 6.

- **Engine Room:** Two pumps located aft of the main engines near the stuffing boxes.
- One RULE 1100 mounted at a higher elevation.

- One additional RULE submersible pump at the lowest point in the bilge (label unreadable). Hose clamp present but not tight. ***See recommendation B-12.**
- **Forward Bilge Compartment:** One ATTWOOD 1100 pump fitted with RULE SUPER SWITCH model 37A automatic float switch.

Testing: All pumps and float switches tested operational during inspection.

Hoses: Oil-resistant bilge discharge hoses fitted with stainless steel clamps and non-return valves at each pump discharge line. Hose runs properly supported and routed above the static waterline.

Alarm: High-water alarm visual indicator functional at helm panel; audible alarm not confirmed. (**See recommendation A-4** under Alarm and Detection Systems.)

Movement: All pump housings secured in place; no excessive movement observed.

13. Domestic Systems, Appliances & Propane System:

Galley Trash Compactor: WHIRLPOOL “Sound Conditioned” built-in trash compactor, 120 V AC, model TU8100XTP2, installed below galley countertop. Unit securely mounted, unit not tested.

Televisions: (None tested)

- Galley: TCL flat screen model 32S334-CA.
- Port cabin: VIZIO flat screen.
- Forward cabin: SAMSUNG flat screen.

Audio/Entertainment Systems: FUSION Bluetooth stereo system with AUDIOVOX speakers, ALPINE BASSWORK subwoofer, and WET SOUNDS amplifier network. STARLINK satellite internet system installed. Not tested.

Refrigerator/Freezer: NOVA KOOL model RFU9000 AC/DC refrigerator and freezer, manufactured October 2, 2019, serial no. 410778. Unit operational at time of inspection.

Cooking Appliances: FORCE 10 three-burner electric stove with oven, not tested. WEBER SPIRIT propane barbecue mounted starboard aft on flybridge, not tested.

Microwave: EWAVE brand AC microwave installed in galley. Unit powered but not tested.

Propane System: No integrated propane system aboard. One portable propane cylinder connected to WEBER SPIRIT barbecue located on starboard flybridge.

14. Heating Systems:

Diesel Heater: AUTOTERM FLOW 14D 12 V diesel-fired hydronic heater (15 kW) located port stern in engine room. Exhaust clamps corroded and exhaust pipe surface rusted. Insulation degraded with one burnt section. See picture 44. ***See recommendation B-13.**

Electric Heaters (Cabin Ducted):

Three MSR 12 V DC heaters installed:

Picture 44: Port aft diesel heater with damaged exhaust insulation and rusty clamps.

- Pilothouse: Model 914, S/N B21-12, ducting secured with plastic zip ties instead of stainless steel hose clamps. *See recommendation B-14.
- Pilothouse: Model 934, S/N B13-93, ducting secured with proper stainless steel clamps.
- Stateroom: Model 934, S/N B15-28, ducting secured and intact.

Galley Heater: TPI CORPORATION model E4002 fan-forced 120 V AC electric cabin heater installed in galley. Permanently mounted within bulkhead. Air intake and discharge via front grille. Housing secured and wiring contained within structure.

15. Plumbing:

15.1 Sewage and Head System:

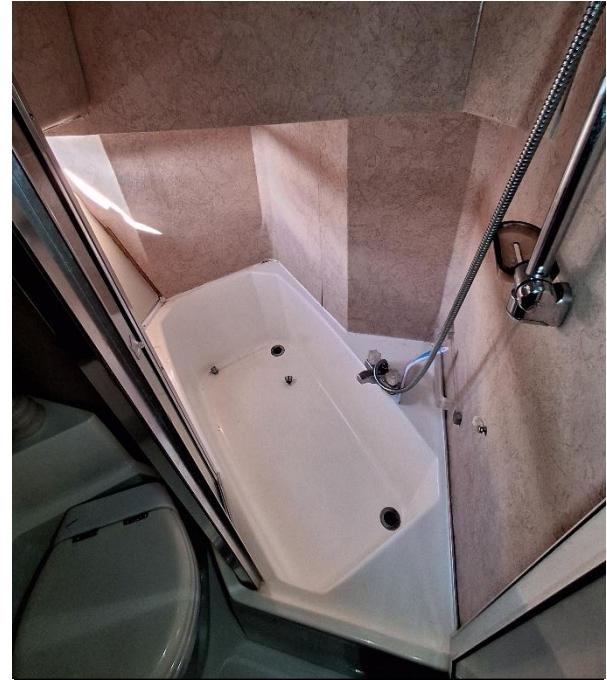
Marine Toilets: Two TECMA electric marine toilets installed, both tested operational during survey.

Tank Monitoring: TANKWATCH holding-tank monitoring system installed at pilothouse station.

Macerator Pump: XYLEM 12 V DC self-priming macerator pump, model 18590-2092, fitted for overboard discharge.

Anti-Siphon Valve: Not confirmed; access to discharge compartment restricted.

Black-Water Holding Tank: Single polyethylene tank serving both heads, approximate capacity 180 Liters (48 US gallons). Equipped with dockside pump-out and overboard discharge connection. Located on the starboard side mid-ship under floorboard.


Piping and Hose Clamps: TRI-FLEX sanitation hose and TRIDENT white sanitation hose installed throughout. Stainless steel hose clamps fitted at all connections. Stainless steel vent fitting on holding tank exhibited corrosion.

Deck Pump-Out Fitting: Located starboard side mid-ship; clearly labeled.

Shower Sumps:

- Forward Head: WHALE plastic sump box, securely mounted and accessible. Not tested.
- Mid-Ship Head: SEASENSE 800 GPH live-well pump fitted as shower sump. Not tested.

Comment: In accordance with the Canada Shipping Act, 2001 and Transport Canada regulations (TP 11717E & TP 1332), all vessels operating in Canadian waters must be fitted with a sewage system that prevents accidental overboard discharge. Non-compliant systems may be subject to fines. Discharges are only permitted through an approved marine sanitation device (MSD) that limits fecal coliform levels to $\leq 250/100\text{ml}$, or $\leq 14/100\text{ml}$ in designated sewage areas.

Picture 45: Forward starboard head fitted with a TECMA head and a shower/ bathtub combination.

15.2 Hot/ Fresh and Potable Water:

Fresh Water Tanks: Two freshwater tanks totaling approximately 760 Liters (200 US gallons). Forward tank located below master bed; aft tank located below cabin sole (not accessible). Both tanks vented overboard through dedicated fittings.

Fresh Water System: Deck fill located starboard bow forward, clearly marked. Stainless steel hose clamps fitted at all fill and vent connections. Inline filters installed. PEX tubing routed throughout vessel. Each head equipped with shower; forward head also fitted with bathtub. See picture 45.

Fresh Water Pumps: Both freshwater pumps were energized and tested during the survey. Each pump operated as intended, building and maintaining system pressure with no leaks or irregular cycling observed.

- Forward Engine Room: PAR-MAX 2.9 GPM 12 V DC freshwater pressure pump.
- Mid-Ship (below stairs): GUSHER 12 V DC pump (identification label not visible due to limited access).

Sewage Water Pump: FLOJET 12 V DC 5.0 GPM pump, model 4125-114, tested while dockside and operational.

Fresh Water Accumulator Tank: GROCO model PST-1 accumulator tank installed downstream of freshwater pressure pump. Capacity 0.95 Liters (1 qt). Constructed of anodized aluminum with internal diaphragm and $\frac{1}{2}$ in NPT connection and SCHRADER valve. Tank reduces pump cycling and stabilizes system pressure. Mounting secured and connections intact.

Hot Water Tank: SPACESAVER model 52708 manufactured by John Wood GSW Electric Water Heater (Canada). Capacity 43 Liters (12 US gal). Rated 120 V AC, 1500 W. Glass-lined steel tank with magnesium anode, adjustable thermostat, and thermal shut-off. CSA certified. Mounted below stairs ahead of engine-compartment entry with PEX plumbing and bonding conductor connected. Unit not tested. See picture 46.

Saltwater Washdown Pump: FLOJET model 4305-143, 12 V DC, located port-aft engine room. Fitted with dual stainless steel hose clamps. Pump not tested.

Dockside Water Connection: Connection located starboard side midship. No pressure regulator, gauge, or check valve observed at inlet. PEX piping visible. *See recommendation C-15.

16. Tender: None Present.

Picture 46: Hot water tank and ABC fire extinguisher. Located below stairs in compartment before entering engine room.

17. Short Operational Test Run:

A limited operational test run was conducted for approximately 30 minutes within Departure Bay and outward into open water. Conditions during the trial included northerly winds estimated at 10–12 knots and light surface chop. Both main engines were operated through progressive speed ranges while monitoring performance, temperature, and vessel response.

- At 2,000 rpm, the vessel maintained approximately 9.4 knots. Engine temperatures began to decrease slightly at this load, indicating effective cooling circulation.
- At 2,900 rpm (approximately 85% of maximum rated power), the vessel maintained an average speed of 14.5 knots. Engine temperature gauges indicated readings between 170°F and 175°F (76.6°C to 79.4°C).
- At maximum operating speed, the starboard engine reached 3,000 rpm and the port engine 3,200 rpm, producing a recorded speed of 16 knots. The starboard engine operated consistently 200 rpm lower than the port engine during the test.

A visible oil sheen was observed on the water surface following engine start-up after departure from the haul-out facility. The rudder angle indicator was non-functional during the trial. The autopilot was not tested underway, as attention was directed to other systems during the trial, and testing was not attempted upon return. The generator and most onboard electrical and mechanical systems were operated during the same period to confirm functionality, unless otherwise specified. Mechanic (Name) of OCEAN TRACK MARINE SERVICES was present for the short operational test run and will submit a separate mechanical condition report.

Recommendations:

A – Immediate & Urgent: Critical deficiencies and safety-related issues that require prompt correction before the vessel is operated. These items typically involve essential safety equipment, fire protection, lifesaving gear, or systems that present an immediate hazard if left uncorrected. They often represent non-compliance with Transport Canada regulations and/or ABYC Standards and therefore must be rectified without delay to ensure safe operation and regulatory compliance.

A-1: Remove all batteries and neutralize residual acid using baking-soda solution. Replace corroded trays with acid-resistant containment and install compliant hold-downs or compression brackets to prevent movement. Fit protective terminal boots on all positive connections. Replace the existing diode isolator with a modern solid-state automatic charging relay (ACR) or voltage-sensing relay (VSR) to improve charging efficiency. Verify all charging voltages and replace any compromised cabling or connectors to ensure full compliance with ABYC E-10 and E-11.
A-2: Ensure that all required Transport Canada safety equipment is carried onboard, kept current, and maintained in serviceable condition with annual inspection. See Transport Canada Boating Safety TP511E document for more information.
A-3: Vessel was not equipped with the required fire buckets or fire axe; ensure compliance with Transport Canada Boating Safety TP 511E by carrying at least two fire buckets (minimum 10 L each) and one fire axe. Have all portable fire extinguishers inspected, serviced, and tagged by a certified technician. Consider installation of a fixed automatic fire-suppression system in the engine room to improve fire safety and meet ABYC A-4 and Transport Canada TP1332E section 10 guidelines.
A-4: Verify proper operation of the bilge high-water audible alarm. Ensure to regularly test all detectors and consider the installation of a propane gas detector.

B – To Be Done: Important items that should be corrected in a timely manner and incorporated into the vessel's next maintenance cycle. These are issues that do not present an immediate hazard but may develop into safety, reliability, or compliance problems if left unaddressed. They should be dealt with sooner rather than later to maintain the vessel's seaworthiness and to prevent more costly or hazardous deficiencies in the future.

B-1: Service windlass electrical connections and foot switch assemblies to restore consistent operation and ensure watertight integrity.
B-2: Service rudder-angle indicator, verify operation of all alarm circuits and repair protective housing for starboard side hour meter.
B-3: Adjust belt tension on both engines to specification and carry spare belts aboard.
B-4: Install dual stainless steel clamps at each main engine exhaust hose connection exceeding 51 mm (2 in) in diameter in accordance with ABYC P-1 standards. Replace the port-side exhaust hose due to visible cracking and deterioration and properly support all exhaust hose runs to prevent kinking, chafing, or undue stress at connection points. Verify all fittings are secure and free of exhaust or water leakage during operation.

B-5: Inspect and replace any rusted hose clamps as required to maintain generator's exhaust integrity in accordance with ABYC P-1.
B-6: Service starboard rudder stuffing box to stop leakage and ensure gland packing integrity.
B-7: Repair or replace leaking steering pump and bleed system to restore full function to inside helm station, which was non-responsive at time of survey.
B-8: Secure port side diesel fuel fill cap.
B-9: Replace wing-nut terminals on generator's battery with marine-rated fasteners and install heat-shrink protection. Secure battery box from movements and install compliant hold-down mechanism per ABYC E-10.
B-10: Service or replace nonfunctional bow light and damaged stern light lens to restore COLREGS Rule 23 compliance. Verify all navigation light circuits and indicators are operational.
B-11: Inspect control wiring and junctions to restore spotlight operation at both helm locations.
B-12: Inspect and properly tighten the hose clamp on the submersible RULE pump discharge line.
B-13: Replace damaged exhaust insulation on port aft diesel heater and replace corroded mounting clamps. Inspect exhaust routing for safe clearance and restore full thermal protection.
B-14: Replace zip ties with stainless steel hose clamps to ensure secure and heat-resistant duct connections.

C – Advisable / None Warranted: Advisory items and non-urgent suggestions that do not require immediate or mandatory action. These notes may include good practices, monitoring of non-critical conditions, or optional improvements that could enhance safety, convenience, or vessel longevity. They are not required for compliance and do not currently present a hazard but should be considered by the owner for long-term maintenance and stewardship of the vessel.

C-1: Repair cosmetic gelcoat puncture on the starboard side bow and monitor for water intrusion.
C-2: Grind and fill port side FRP stress cracks, repair localized delamination and refinish to restore structural and watertight integrity. Use the adjacent cleat with caution to prevent excessive loading or flexing of the repaired area.
C-3: Engage a qualified fiberglass repair technician to assess the extent of core delamination and moisture intrusion at the bow. Dry and re-core affected deck sections and reseal all deck hardware to prevent further water ingress.
C-4: Inspect swim platform mounting bolts and hardware at the re-boarding ladder area for corrosion and structural integrity. Clean and treat surface corrosion, replace any degraded fasteners, and confirm platform attachment remains secure to the transom structure.
C-5: Clean and disinfect affected areas; apply mold-inhibiting treatment and improve ventilation.
C-6: Repair or refinish starboard exterior window frame to prevent corrosion and water ingress.

C-7: Service or replace inoperative port-side wiper motor and verify 12V DC circuit continuity.
C-8: Replace or rebuild port-side flybridge seating base to restore structural support and prevent further delamination.
C-9: Service or replace access-hatches hardware, located in aft cockpit, and address cracked FRP surfaces to maintain accessibility and integrity of engine-room openings.
C-10: Troubleshoot and restore rudder angle indicator functionality to maintain safe helm reference.
C-11: Re-secure port-side outer trim tab to ensure proper operation and prevent water intrusion at hinge area.
C-12: Verify purpose of the tagged AC switch, confirm that electrical work has been completed safely, and inspect circuit integrity before removing the lockout tag.
C-13: Relocate or shield upward-facing receptacle to reduce water exposure risk and comply with ABYC E-11 wet-location protection standards.
C-14: Verify that call sign "WAM 8944" belongs to the vessel and register for an MMSI number under current ownership through Innovation, Science and Economic Development Canada (ISED).
C-15: Install a pressure regulator, gauge, and backflow-prevention check valve at the dockside water inlet to prevent over-pressurization and contamination of the onboard freshwater system according to ABYC H-23. Do not leave the dockside supply connected or pressurized when unattended.

D – Compliance / Regulatory Observation: Items that did not meet the technical or installation standards specified by Transport Canada, ABYC, NFPA, or the International Regulations for Preventing Collisions at Sea (COLREG). These observations identified deviations from current regulatory or best-practice guidelines that did not present immediate safety hazards or operational impairment at the time of inspection. They are recorded to inform the owner of non-conforming installations or components that should be corrected at their discretion to ensure full compliance and maintain the vessel's certification integrity.

D-1: Vessel license and registration paperwork were not available on board; verify that all documentation is current and valid in accordance with Transport Canada Small Vessel Regulations, Part 2 – Licensing of Vessels, and Canada Shipping Act 2001, Sections 43–52, to ensure the vessel is properly licensed and in compliance.

Best Practice Recommendations:

- 1) We recommend that all vessels undergo regular maintenance, checks, and servicing. This includes, but is not limited to, ensuring the operation of through hulls and valves, checking the integrity of lifelines and life rails, inspecting electrical wiring and components, assessing corrosion on hose clamps, and verifying the tightness of bolt assemblies.
- 2) Fire extinguishers are to be checked, refilled if required and date tagged.
- 3) It is the client's responsibility to ensure that Transport Canada required safety equipment is on board. See <http://www.tc.gc.ca/boatingsafety> (TP511E) for the requirements.
- 4) All Seacocks and through-hull fittings must be regularly inspected and operated.
- 5) Bilge area must be kept dry, free of oil, without debris and clean at all times.
- 6) All electrical cable ends and connectors should be serviced at least annually.
- 7) It is advisable to inspect and service all pumps and impellers annually.

- 8) Any traces of corrosion or rust stain should not be taken lightly. All matter should be investigated for damages and metal loss.
- 9) Navigation lights must meet the applicable standards set out in the Collision Regulations.
- 10) The possibility of fuel tank deterioration or failure increase with age. It is therefore suggested that older tanks be routinely inspected and pressure tested.
- 11) Stability is particularly affected by vessel handling and by overloading of cargo and crew. Every effort should be made to operate within the capabilities and limitations of the operator and the vessel.
- 12) Shore power connectors should be dismantled and inspected on an annual basis.
- 13) Inspect hydraulic fittings and connections after each use to ensure no leaks has developed.

Vessel Condition:

It is the Surveyor's experience that develops an opinion of the OVERALL VESSEL RATING OF CONDITION after the Survey has been completed, and the findings have been organized in a logical manner.

The grading of condition developed by BUC RESEARCH and accepted in the marine industry for a vessel at the time of Survey determines the adjustment to the range of base values in the BUC USED BOAT PRICE GUIDE for a similar vessel sold within a given time period as a consideration to determine the Market Value.

The following is the accepted Marine Grading System of Condition:

"EXCELLENT (BRISTOL) CONDITION", is a vessel that is maintained in mint or Bristol fashion (usually better than factory new, loaded with extras, a rarity).

"ABOVE AVERAGE CONDITION", has had above average care and is equipped with extra electrical and electronic gear.

"AVERAGE CONDITION", ready for sale requiring no additional work and normally equipped for her size.

"FAIR CONDITION", requires usual maintenance to prepare for sale.

"POOR CONDITION", substantial yard work required and devoid of extras.

"RESTORABLE CONDITION", enough of hull and engine exists to restore the boat to usable condition.

As a result of the Survey, as shown in the REPORT OF MARINE SURVEY & FINDINGS AND RECOMMENDATIONS sections of this report and by virtue of my experience, my opinion is:

Overall Vessel Rating was: "FAIR CONDITION".

Valuation Summary:

Market Assessment:

1) 1990 Bayliner 4588, Ladysmith, British Columbia, SOLD for CAD \$155,000.

Highlights: Twin-diesel pilothouse motor yacht offering spacious accommodation with two staterooms, two heads and full galley; powered for coastal cruising with sizeable fuel and water capacity, presenting a turnkey live-aboard/cruising platform.

Source: <https://www.boatdealers.ca/boats-for-sale/578121/bayliner-4588-ladysmith-british-columbia>

2) 1990 Bayliner 4588 Motor yacht, Richmond, British Columbia, Sold in 2025 for CAD \$125,000.

Highlights: Pilothouse/flybridge layout with three-stateroom/2-head accommodation and long-range fuel capacity; presented as a “lot of boat for the money” donor platform for coastal cruising. Listed by Grand Yachts Inc.

Source: https://www.grandyachts.com/our-inventory/used-boats-for-sale/?boat_id=9327739

3) 1988 Bayliner 4588 Pilothouse, Ladysmith, British Columbia. Listed at CA\$134,000 by Calibre Yacht Sale.

Highlights: Twin-diesel power with full three-stateroom/four-guest layout, large fuel and water capacity for extended cruising, live-aboard amenities featured.

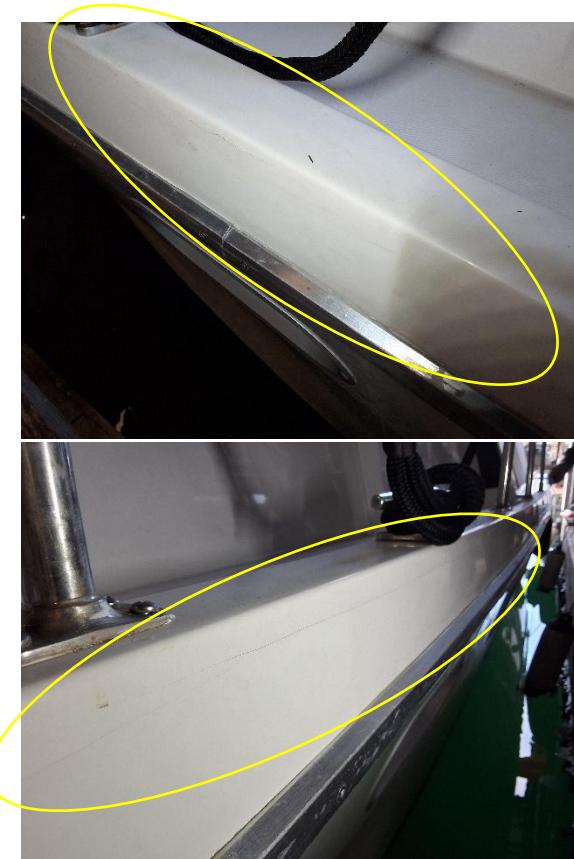
Source: <https://ca.boats.com/power-boats/1988-bayliner-4588-pilothouse-9854521/>

Valuation Assessment:

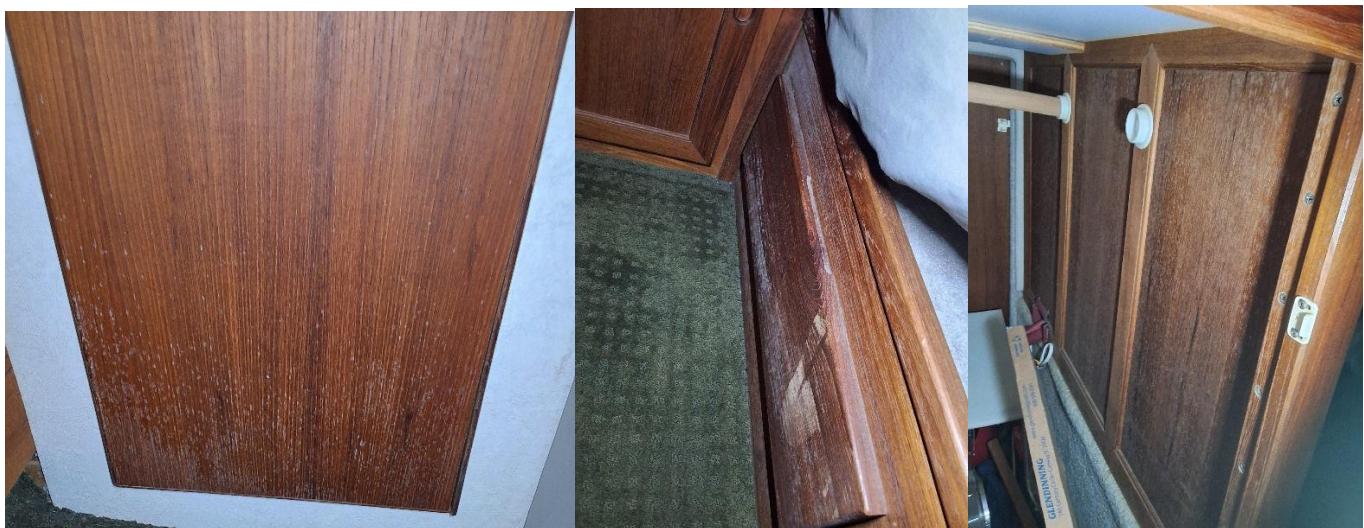
The **Fair Market Value** reflects the estimated price a knowledgeable buyer would reasonably pay for the vessel in its current “as-is, where-is” condition, assuming no pressure on either party. The **Replacement Value** represents the approximate cost to replace the vessel with a similar new model at today’s market rates, excluding depreciation.

All values are based on the vessel’s observed condition, location, and available market data. Equipment not fully tested is assumed to be serviceable unless otherwise stated. These figures are estimates and subject to change with market conditions. The surveyor has no financial interest in the vessel.

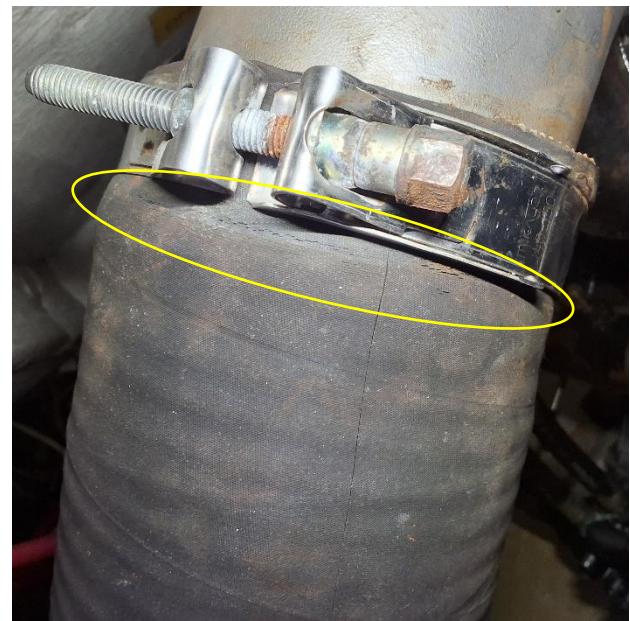
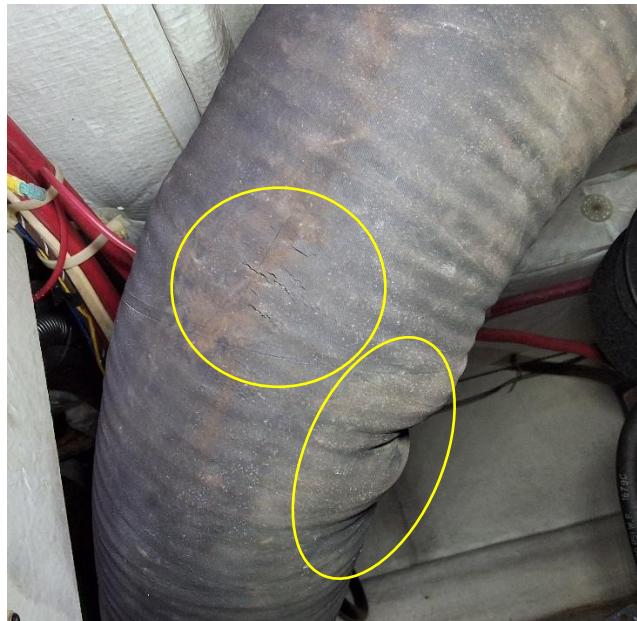
Valuation Results: Estimated Fair Market Value is allocated as follows: *Value excluding taxes.

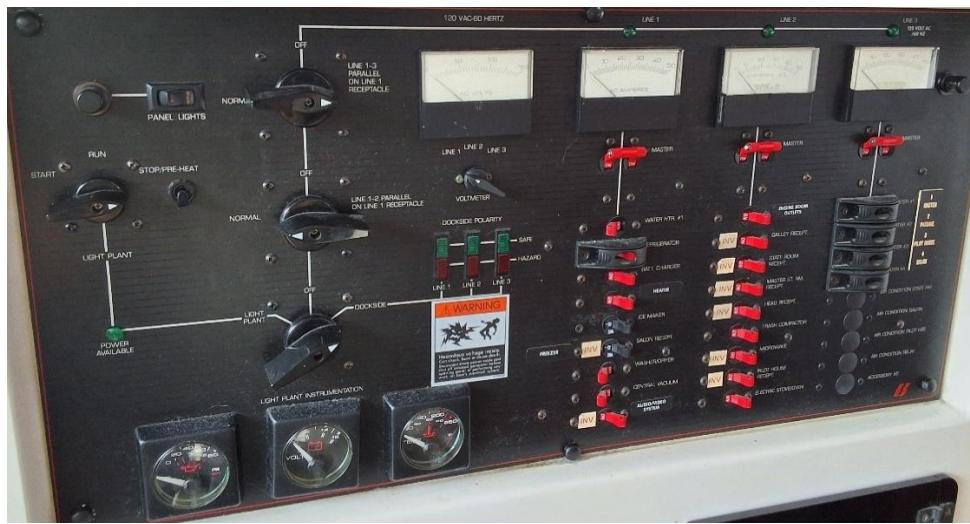

- **Hull & Structure** (Fair Condition): \$ XX,XXX – XX,XXX CAD.
- **Machinery** (Main engines and generator): \$ XX,XXX – XX,XXX CAD.
- **Equipment** (Navigation electronics, inverter/charger, batteries, etc.): \$ XX,XXX CAD.

Total Estimated Fair Market Value: \$ XXX,XXX – XXX,XXX CAD.


Total Estimated Replacement Value (Approx.): \$ X,XXX,XXX CAD.

Appendix:



1) Stress cracks observed on port deck beside cleat and at port access door near rub rail (hard to see on pictures).


2) Mold visible on wooden panels inside port guest cabin area and port side storage areas.

3) Port side main engine exhaust hose showing cracking at two main stress points. Also only using one single hose clamp to secure hose to elbow.

4) AC switchboard panel and remote generator starting panel (Left); AC switch tagged "Danger" (Right).

5) Starboard side battery bank. Top left showing corrosion on battery tray. Top right photo showing corroded terminal and spilled fluid on top of the battery. Bottom left photo showing four of the six batteries. Bottom right showing remaining two batteries with corroded terminal (top right photo).

6) Three bilge pumps: (Left) RULE submersible pump. Located at lowest bilge point. Hose clamp loose on hose. (Middle) RULE 1500 mounted above submersible pump. (Right) ATTWOOD forward pump. Located below stairs amidship.

7) Extra vessel's interior photos. Left photo galley, located port side. Right photo starboard half main salon, looking aft from the galley.

Utilization of Survey

This vessel was surveyed exclusively for (Client's Name). This survey is to be used by the client only. Any other person(s) using this survey report does so at their own risk. This report should be considered as an entire document. No single section is meant to be used except as part of the whole. This report remains the property of Sea Captain Marine Surveyor Inc. and is not transferable without written consent. This survey represents the surveyor's honest and unbiased opinion. The surveyor has no personal interest in the vessel or the transaction.

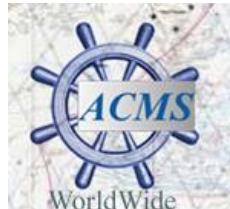
Sea Captain Marine Surveyor Inc. certify that, to the best of the surveyor's knowledge and belief, the statements of facts contained in this report are true and accurate. This report represents the surveyor's unbiased professional opinion, based on the conditions and findings observed during the survey.

X

Nicolas Cote
Marine Surveyor

Signed on: XX/XX/2025.

Survey report sent on: XX/XX/2025.


Sea Captain Marine Surveyor Inc.

406 Millstone Ave, Nanaimo, B.C. V9S 5A7

Phone: (250) 266-1522

Email: info@seacaptainmarinesurveyor.ca

www.seacaptainmarinesurveyor.ca

